Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803

نویسندگان

  • Yaxing Wang
  • Mengliang Shi
  • Xiangfeng Niu
  • Xiaoqing Zhang
  • Lianju Gao
  • Lei Chen
  • Jiangxin Wang
  • Weiwen Zhang
چکیده

BACKGROUND Recent efforts demonstrated the potential application of cyanobacteria as a "microbial cell factory" to produce butanol directly from CO2. However, cyanobacteria have very low tolerance to the toxic butanol, which limits the economic viability of this renewable system. RESULTS Through a long-term experimental evolution process, we achieved a 150% increase of the butanol tolerance in a model cyanobacterium Synechocystis sp. PCC 6803 after a continuous 94 passages for 395 days in BG11 media amended with gradually increased butanol concentration from 0.2% to 0.5% (v/v). To decipher the molecular mechanism responsible for the tolerance increase, we employed an integrated GC-MS and LC-MS approach to determine metabolomic profiles of the butanol-tolerant Synechocystis strains isolated from several stages of the evolution, and then applied PCA and WGCNA network analyses to identify the key metabolites and metabolic modules related to the increased tolerance. The results showed that unstable metabolites of 3-phosphoglyceric acid (3PG), D-fructose 6-phosphate (F6P), D-glucose 6-phosphate (G6P), NADPH, phosphoenolpyruvic acid (PEP), D-ribose 5-phosphate (R5P), and stable metabolites of glycerol, L-serine and stearic acid were differentially regulated during the evolution process, which could be related to tolerance increase to butanol in Synechocystis. CONCLUSIONS The study provided the first time-series description of the metabolomic changes related to the gradual increase of butanol tolerance, and revealed a metabolomic basis important for rational tolerance engineering in Synechocystis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of alcohol stress tolerance genes of Synechocystis sp. PCC 6803 using adaptive laboratory evolution

Background Synechocystis sp. PCC 6803 is an attractive organism for the production of alcohols, such as isobutanol and ethanol. However, because stress against the produced alcohol is a major barrier for industrial applications, it is highly desirable to engineer organisms with strong alcohol tolerance. Results Isobutanol-tolerant strains of Synechocystis sp. PCC 6803 were obtained by long-te...

متن کامل

Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803

BACKGROUND Photosynthetic cyanobacteria have been recently proposed as a 'microbial factory' to produce butanol due to their capability to utilize solar energy and CO2 as the sole energy and carbon sources, respectively. However, to improve the productivity, one key issue needed to be addressed is the low tolerance of the photosynthetic hosts to butanol. RESULTS In this study, we first applie...

متن کامل

Butanol tolerance regulated by a two-component response regulator Slr1037 in photosynthetic Synechocystis sp. PCC 6803

BACKGROUND Butanol production directly from CO2 in photosynthetic cyanobacteria is restricted by the high toxicity of butanol to the hosts. In previous studies, we have found that a few two-component signal transduction systems (TCSTSs) were differentially regulated in Synechocystis sp. PCC 6803 after butanol treatment. RESULTS To explore regulatory mechanisms of butanol tolerance, in this wo...

متن کامل

Thioredoxin peroxidase in the Cyanobacterium Synechocystis sp. PCC 6803.

The amino acid sequence deduced from the open reading frame designated sll0755 in Synechocystis sp. PCC 6803 is similar to the amino acid sequences of thioredoxin peroxidases from other organisms. In the present study, we found that a recombinant SLL0755 protein that was expressed in Escherichia coli was able to reduce H2O2 and tertiary butyl hydroperoxide with thioredoxin from E. coli as the e...

متن کامل

Identification of Substrain-Specific Mutations by Massively Parallel Whole-Genome Resequencing of Synechocystis sp. PCC 6803

The cyanobacterium, Synechocystis sp. PCC 6803, was the first photosynthetic organism whose genome sequence was determined in 1996 (Kazusa strain). It thus plays an important role in basic research on the mechanism, evolution, and molecular genetics of the photosynthetic machinery. There are many substrains or laboratory strains derived from the original Berkeley strain including glucose-tolera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014